Categories: Development

FastAPI, SQLAlchemy & Uvicorn

A FastAPI, SQLAlchemy & Uvicorn to fetch a Google Sheet

A FastAPI, SQLAlchemy & Uvicorn to fetch a Google SheetA FastAPI, SQLAlchemy & Uvicorn to fetch a Google Sheet
A FastAPI, SQLAlchemy & Uvicorn to fetch a Google Sheet

This PoC is using FastAPI with SQLAlchemy, to:

  • Fetch items from a Google Sheets document (range A:C cells), based on the Google spreadsheet ID.
  • Store the items into a database (SQLite, Postgres, Mysql, MSSQL,Oracle).
  • Serve the items from the DB, via Restful API.

Helpful for a cronjob/task that triggers every 5 minutes the endpoint “/cronjob/{item_id}” It will check if it’s a new Spreadsheet or already exists. In the first case it will create a new RECORD inside the TABLE data, otherwise it will update the existing TABLE items with the new items.

  • There are improvements to apply, and they are written in TO-DO list.
  • Tested on a Linux machine.

REST API Endpoints Design

REST API access to items resources.

ActionHTTPVerbEndpointDescription
FetchGET/fetch/{item_id}Fetch All Items in realtime from Google Sheet [for debug]
CronjobPOST/PUT/cronjob/{item_id}Fetch All Items From Google And Store/Update DB
QueryGET/queryGet items from the DB based on Google ID

Folders structure

  • Deploymeny.yml (Kubernetes)
  • Dockerfile (Docker)
  • README.md (This File)
  • app (Folder with the python APP)
    • clibs (Custom Libs folder)
      • db.py
      • gservices.py
      • models.py
      • repositories.py
      • schemas.py
    • config
      • credentials.json (to download)
      • data.db (autogenerate)
    • main.py (main python APP)
    • requiremets.txt

Prerequisites:

  • A basic python and SQLite knowledge
  • A basic knowledge of python libraries, classes like Pydantic, Pandas, URLRequests.
  • Google Cloud Dev account, to enable the google API and download the credentials.
  • A Google spreadsheet, with the above user/credentials allowed in read mode.
  • Python 3.11 with Pipenv for local test with ENV.
  • Docker to test with containers.
  • Kubernetes with HelmChart/FluxCD for a cluster deployment.

SETUP & RUN

There are 3 differents setup to run this project:

  • Local Python env
  • Docker
  • Kubernetes (microk8s)

SETUP A LOCAL PYTHON ENV

  1. Clone the reposistory
$ git clone git@github.com:garanet/fastapi_sqlalchemy.git 
$ cd fastapi_sqlalchemy
  1. Activate Virtual Environment.
$ pipenv shell --python 3.11
  1. Install all the required dependencies using Pipenv.
$ pipenv install google-api-python-client 
$ pipenv install google-auth-httplib2
$ pipenv install google-auth-oauthlib
$ pipenv install fastapi
$ pipenv install uvicorn
$ pipenv install sqlalchemy
$ pipenv install pandas
or 
$ pip install -r requiremets.txt
  1. Copy the credentials.json file downloaded from google dev-api. Follow this docs to generate the credentials.json file
$ cp ~/Download/credentials.json ./app/config/
  1. Run the app
$ python main.py

SETUP A DOCKER ENV

  1. Clone the reposistory
$ git clone git@github.com:garanet/fastapi_sqlalchemy.git 
$ cd fastapi_sqlalchemy
  1. Copy the credentials.json file downloaded from google dev-api. Follow this docs to generate the credentials.json file
$ cp ~/Download/credentials.json ./app/config/
  1. Build the docker Application.
$ docker build -t fastapi:latest .
  1. Run the docker Application and expose the port
$ docker run -p 9000:9000 fastapi

SETUP A K8s ENV with microk8s

  1. Clone the reposistory
$ git clone git@github.com:garanet/fastapi_sqlalchemy.git 
$ cd fastapi_sqlalchemy
  1. Copy the credentials.json file downloaded from google dev-api.
$ cp ~/Download/credentials.json ./app/config/
  1. Build the docker Application.
$ docker build -t fastapi:latest .
  1. Export the docker image.
$ docker save fastapi:latest > fastapi.tar
  1. Import the docker tar file in microk8s
$ microk8s ctr image import fastapi.tar
  1. Deploy the deployment.yml file into your helmcharts/orchestra tool
$ flux reconcile ks microservices

Testing

GET /fetch/{item_id} -> "Get items from Google without store them" 
$ curl -X 'GET' \ 'http://127.0.0.1:9000/fetch/{google_spreadsheet_id}' \latest.tar -H 'accept: application/json'
POST /cronjob/{item_id} -> "Get items and store or update them into the DB" 
$ curl -X 'POST' \ 'http://127.0.0.1:9000/cronjob?item_id=1LAvH4wPOXZSdfVRRHwDGaS5ensyQg2TNm_eoISNcnQg' \ -H 'accept: application/json' \ -d ''
GET /querey/{item_id} -> "Get items from the DB" 
$ curl -X 'GET' \ 'http://127.0.0.1:9000/query?item_id=1LAvH4wPOXZSdfVRRHwDGaS5ensyQg2TNm_eoISNcnQg' \ -H 'accept: application/json'

How it works

  • Google
  • Database
  • Database Models
  • Schemas
  • Repositories
  • Main APP / EntryPoint

Google Cloud Console

Follow these docs to generate the credentials.json file

The full repository and the code explanation, visit my GITHUB

REFERENCES

TO DO

  • Encrypt the Google Credentials file or use a keypass/password manager.
  • Enable the https protocol in uvicorn, generating the key and the pem file.
  • Improve the async and managing timeout session for big file.
Share

Recent Posts

Client TrueNas & Ldap with python Flask

A webtool in Python Flask that creates an LDAP user and his TrueNAS shares pool in ISCSI or NFS. There… Read More

Simple Terraform configuration

A Terraform configuration that provisions the following infrastructure: A VPC with: Public subnets for external resources. Private subnets for internal… Read More

Kubernetes – Notes

Kubernetes is an open-source container orchestration tool or system that is used to automate tasks Read More